Hardness Results and Efficient Algorithms for Graph Powers

نویسندگان

  • Van Bang Le
  • Nguyen Ngoc Tuy
چکیده

The k-th power H of a graph H is obtained from H by adding new edges between every two distinct vertices having distance at most k in H . Lau [Bipartite roots of graphs, ACM Transactions on Algorithms 2 (2006) 178–208] conjectured that recognizing k-th powers of some graph is NP-complete for all fixed k ≥ 2 and recognizing k-th powers of a bipartite graph is NP-complete for all fixed k ≥ 3. We prove that these conjectures are true. Lau and Corneil [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83–102] proved that recognizing squares of chordal graphs and squares of split graphs are NP-complete. We extend these results by showing that recognizing k-th powers of chordal graphs is NP-complete for all fixed k ≥ 2 and providing a quadratic-time recognition algorithm for squares of strongly chordal split graphs. Finally, we give a polynomialtime recognition algorithm for cubes of graphs with girth at least ten. This result is related to a recent conjecture posed by Farzad et al. [Computing graph roots without short cycles, Proceedings of STACS 2009, pp. 397–408] saying that k-th powers of graphs with girth at least 3k−1 is polynomially recognizable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness of Approximate Coloring

The graph coloring problem is a notoriously hard problem, for which we do not have efficient algorithms. A coloring of a graph is an assignment of colors to its vertices such that the end points of every edge have different colors. A k-coloring is a coloring that uses at most k distinct colors. The graph coloring problem is to find a coloring that uses the minimum number of colors. Given a 3-co...

متن کامل

Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation

We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in ...

متن کامل

Solving a nurse rostering problem considering nurses preferences by graph theory approach

Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009